F long-term heavy smoking while exhibiting the protective alleles, presented AMD pathology. This further reinforces that in addition to genetic background, environmental and epigenetic factors also play important roles in the etiology of AMD and that the susceptibility alleles are not the sole contributors to the disease. For generation of iPSCs we used non-integrating Sendai viruses. The generated iPSC colonies were manually picked and expanded and were characterized by staining with Tra1-60 and Nanog (Additional file 1: Figure S1A) as well as by Real-Time PCR for pluripotency markers (Additional file 1: Figure S1B). To verify that the iPSCs do not present chromosomal abnormalities, karyotyping was performed on all generated iPSC lines. G band karyotyping analyses are presented in Additional file 1: Figure S2. As shown in Additional file 1: Figure S2, alltested cells for the AMD RPE-iPSC-RPE and the AMD Skin-iPSC-RPE with female trans-4-Hydroxytamoxifen chemical information background present normal karyotyping with XX chromosomes (9R, 32R and 005BF). The healthy RPE-iPSC-RPE with male background were normal for all somatic chromosomes, however, in approximately 50 of the tested cells the Y chromosome was missing. It is known that loss of the Y chromosome in males is a phenomenon associated with aging [43], and it is PubMed ID:https://www.ncbi.nlm.nih.gov/pubmed/28893839 quite probable that the donors presented aneuploidy prior to sample collections. This is further supported by reports showing that the predominant genetic changes found in hiPSC lines involve changes in chromosomes 1, 12, 17 and 20, reminiscent of the changes observed in cancer cells [44]. The iPSCs were differentiated into functional RPE as previously described [14], and the generated iPSCRPE cell lines were characterized by immunostaining with ZO-1, RPE65, Occludin and Bestrophin antibodies (Fig. 1a). Our data showed that all iPSC-RPE cell lines were positive for the above staining and were characterized as RPE. We also performed real-time PCR for RPE signature genes with iPSC-RPE and their parental donors the primary RPE. All iPSC-RPE expressed the RPE specific genes comparable to the primary RPE from which they were derived (Fig. 1b,c). To confirm the functionality of the iPSC-RPE we performed phagocytosis assay by incubating the iPSC-RPE with bovine photoreceptor outer segments (POS) that were conjugated with FITC. We quenched the uninternalized POS by treating the samples with Trypan blue to only visualize the internalized POS. Figure 2 shows the POS phagocytosis in iPSC-RPE cultured on transwells for 4 weeks, and reveal that all cell lines are functional, capable of phagocytosing the POS. A representative image for normal and AMD samples with and without Trypan blue treatment is shown in Additional file 1: Figure S3.Identification of distinct functional impairments in AMD RPE-iPSC-RPE and AMD Skin-iPSC-RPEWe have differentiated the AMD and normal RPE-iPSCs, and AMD Skin-iPSC to functional RPE, we then investigated their phenotypic and functional characteristics . Interestingly, both AMD RPE-iPSC-RPE and AMD SkiniPSC-RPE demonstrated similar disease-relevant cellular phenotypes, whereas, the normal RPE-iPSC-RPE were devoid of disease phenotypes, and presented normal cellular and molecular characteristics (Figs. 3, 4). We performed several cellular and molecular assays. First, we verified the cell viability of the AMD RPE-iPSCRPE and AMD Skin-iPSC-RPE as compared to normal iPSC-RPE under oxidative stress conditions that we have established in our lab by in.