Anti-Histone H3 Antibody

Anti-Histone H3 Antibody__Rabbit Anti-Human Histone H3 Polyclonal Squalamine

Product Name Histone H3 Antibody
Description

Rabbit Anti-Human Histone H3 Polyclonal

Species Reactivity Human, Mouse, Rat
Applications ,
WB
,
IHC
,
ICC/IF
Antibody Dilution WB (1:2000), IHC (1:200), ICC/IF (1:500); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Human
Immunogen A synthesized peptide derived from human Histone H3
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS, pH 7.4, 50% glycerol, 150mM NaCl, 0.02% sodium azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Affinity Purified
Clonality Polyclonal
Isotype IgG
Specificity Detects endogenous levels of Histone H3
Cite This Product Rabbit Anti-Human Histone H3 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-1252)
Certificate of Analysis A 1:1000 dilution of SPC-1252 was sufficient for detection of Histone H3 in 10 µg of COLO205 cell lysates by ECL immunoblot analysis using Goat Anti-Rabbit IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128516

Alternative Names H3 histone family, member A Antibody, H3/A Antibody, H31_HUMAN Antibody, H3FA Antibody, Hist1h3a Antibody, histone 1 H3a Antibody, Histone cluster 1 H3a Antibody, Histone H3.1 Antibody
Research Areas Cell Signaling, Epigenetics and Nuclear Signalling, Histones
Cellular Localization Chromosome, Nucleus
Accession Number NP_003520.1
Gene ID 8350
Swiss Prot P68431/Q71DI3/P84243
Scientific Background Histone H3 is a 17 kD nuclear protein that is a component of an octamer containing pairs of each of four core histones (H2A, H2B, H3, H4). The core histones create nucleosome structure of chromosomal fiber in eukaryotes and are dynamic in gene regulation. The histones exhibit cell cycle-dependent transcriptional regulation except for the variant H3.3 which is cell cycle-independent. Histone H3 can be modified by phosphorylation, acetylation, ubiquitination, ribosylation, and methylation. Histone H3 has been shown to interact with Rsk-2, MSK1, GCN5 family of HATs, HDACs, PARP, SET7/9, and CARM1. Histones play a cental role in transcription regulation, DNA repair, DNA replication and chromosomal stability.
References 1. Wu R., et al. (1981) Cell. 27:321.
2. Strahl B., et al. (2000) Nature. 403:41.
3. Bauer U., et al. (2002) EMBO Rep. 3:39.
4. Frank D., et al. (2003) Gene. 312:135.

Anti-Histone H2A.X Antibody (pSer139)

Anti-Histone H2A.X Antibody (pSer139)__Rabbit Anti-Human Histone H2A.X (pSer139) Polyclonal Sapitinib

Product Name Histone H2A.X Antibody (pSer139)
Description

Rabbit Anti-Human Histone H2A.X (pSer139) Polyclonal

Species Reactivity Human, Mouse, Rat
Applications ,
WB
,
ICC/IF
Antibody Dilution WB (1:1000); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Human
Immunogen Synthesized phosphopeptide derived from human Histone H2A.X around the phosphorylation site of serine 139 (Q-A-SP-Q-E).
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS (without Mg2+ and Ca2+), pH 7.4, 50% glycerol, 150mM NaCl, 0.02% sodium azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Affinity Purified
Clonality Polyclonal
Isotype IgG
Specificity Detects endogenous levels of Histone H2A.X only when phosphorylated at serine 139.
Cite This Product Rabbit Anti-Human Histone H2A.X (pSer139) Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-1251)
Certificate of Analysis A 1:1000 dilution of SPC-1251 was sufficient for detection of Histone H2A.X in 10 µg of 293T cell lysates by ECL immunoblot analysis using Goat Anti-Rabbit IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128510

Alternative Names H2A histone family member X Antibody, H2A.FX Antibody, H2A.X Antibody, H2AFX Antibody, H2AX histone Antibody, Histone 2A Antibody, Histone 2AX Antibody
Research Areas Cell Signaling, DNA Damage and Repair, DNA Damage Recognition, DNA/RNA, Epigenetics and Nuclear Signalling, Histones
Cellular Localization Chromosome, Nucleus
Accession Number NP_002096.1
Gene ID 3014
Swiss Prot P16104
Scientific Background H2AX (H2A histone family, member X) is one of several genes coding for histone H2A. H2AX becomes phosphorylated on serine 139 as a reaction on DNA Double-strand breaks (DSB). The kinases of the PI3-family (Ataxia telangiectasia mutated, ATR and DNA-PKcs) are responsible for this phosphorylation, especially ATM. The role of the phosphorylated form potentially allows for space for the recruitment of proteins necessary during repair of DSBs. In addition to its role in DNA-damage repair, H2A.X is required for DNA fragmentation during apoptosis and is phosphorylated by various kinases in response to apoptotic signals. H2A.X is phosphorylated at Ser139 by DNA-PK in response to cell death receptor activation, c-Jun N-terminal Kinase (JNK1) in response to UV-A irradiation, and p38 MAPK in response to serum starvation.
References 1. Kuo L.J., and Yang L.X. (2008) In Vivo. 22(3): 305-309.
2. Mukherjee B., et al. (2006) DNA Repair (Amst). 5: 575-90.
3. Solier S., et al. (2009) Mol Cell Biol. 29: 68-82.
4. Lu C., et al. (2006) Mol Cell. 23: 121-32.
5. Lu C., et al. (2008) FEBS Lett. 582: 2703-8.

Hinokitiol

Hinokitiol__Iron Chelator antioxidant SCH 58261

Product Name Hinokitiol
Description

Iron Chelator antioxidant

Purity >98%
CAS No. 499-44-5
Molecular Formula C10H12O2, C10H12O3
Molecular Weight 164.2, 165.2
Storage Temperature -20ºC
Shipping Temperature Shipped Ambient
Product Type Antioxidant
Solubility Soluble in DMSO or ethanol (25 mg/ml)
Source Synthetic
Appearance White Solid
SMILES CC(C)C1=CC=CC(=O)C(=C1)O
InChI InChI=1S/C10H12O2/c1-7(2)8-4-3-5-9(11)10(12)6-8/h3-7H,1-2H3,(H,11,12)
InChIKey FUWUEFKEXZQKKA-UHFFFAOYSA-N
Safety Phrases Classification: Caution: Substance not yet fully tested.
Safety Phrases:
S22 – Do not breathe dust
S24/25 – Avoid contact with skin and eyes
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
Hazard Phrases:
H302
Cite This Product Hinokitiol (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-151)

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128456

Alternative Names 2-Hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one
Research Areas Cancer, Oxidative Stress
PubChem ID 3611
Scientific Background Hinokitiol is a natural monoterpenoid. It is a potent metal chelator that induces differentiation and apoptosis in teratocarcinoma F9 cells (1), mediated by activation of caspase-3 (2). It also inhibits tyrosinase most likely via metal chelation (3).
References 1. Tanaka T., et al. (1999) Cell Biol Int. 23(8): 541-550.
2. Ido Y., et al. (1999) Cell Prolif. 32(1): 63-73
3. Kim D.S., et al. (2004) Arch Pharm Res. 27(3): 334-339.

Anti-HIF2 alpha Antibody EP190B

Anti-HIF2 alpha Antibody
EP190B__Mouse Anti-Human HIF2 alpha Monoclonal IgG1 LPA2 antagonist 1

Product Name HIF2 alpha Antibody
Description

Mouse Anti-Human HIF2 alpha Monoclonal IgG1

Species Reactivity Human, Mouse
Applications ,
WB
,
IHC
,
ICC/IF
,
ELISA
,
AM
Antibody Dilution WB (1:500), IHC (1:100), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species Mouse
Immunogen Species Human
Immunogen GST-human EPAS-1 (HIF2alpha) amino acids 535-631 fusion protein
Concentration 1 mg/ml
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH7.4, 50% glycerol, 0.09% sodium azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Protein G Purified
Clonality Monoclonal
Clone Number EP190B
Isotype IgG1
Specificity Detects ~100kDa. Specific for HIF2 Alpha.
Cite This Product Mouse Anti-Human HIF 2 alpha Monoclonal, Clone EP190B (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-185)
Certificate of Analysis 1 µg/ml of SMC-185 was sufficient for detection of HIF2α in 20 µg of CoCl2-induced Hela cell lysate by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128387

Alternative Names ECYT4 Antibody, EPAS1 Antibody, HIF2alpha Antibody, HIF1 Alpha like factor Antibody, HLF Antibody, Hypoxia inducible factor 2 alpha Antibody, MOP2 Antibody, PASD2 Antibody
Research Areas Cancer, Cell Signaling, Epigenetics, Oxidative Stress
Cellular Localization Nucleus
Accession Number NP_001421.4
Gene ID 2034
Swiss Prot Q99814
Scientific Background Members of the hypoxia-inducible factor (HIF) family of transcription factors regulate the cellular response to hypoxia (1). HIF2-Alpha is involved in catecholamine homeostasis, vascular remodeling, physiological angiogenesis and adipogenesis. It is overexpressed in many cancerous tissues, but its exact role in tumourprogression remains to be clarified (2). Studies suggest that in the case of non-small cell lung cancer, HIF2-Alpha actually is a promoter of tumor growth and progression in a solid tumor (1). Other data suggests that HIF2-Alpha is an important regulator of innate immunity, and therefore may be useful in the therapeutic target for treating inflammatory disorders and cancer (3).
References 1. Kim W.Y., et al. (2009) J Clin Invest. 119(8): 2160-2170.
2. Favier J., Lapointe S., Maliba R. and Sirois M.G. (2007) BMC Cancer. 7:139.
3. Imtiyaz H.Z., et al. (2010) J Clin Invest. 120(8): 2699-2714.

Anti-HIF1 alpha Antibody ESEE122

Anti-HIF1 alpha Antibody
ESEE122__Mouse Anti-Mouse HIF1 alpha Monoclonal IgG1 Orteronel

Product Name HIF1 alpha Antibody
Description

Mouse Anti-Mouse HIF1 alpha Monoclonal IgG1

Species Reactivity Human, Mouse, Rat, Bovine
Applications ,
WB
,
IHC
,
ICC/IF
,
ELISA
Antibody Dilution WB (1:1000), IHC (1:100), ICC/IF (1:50); optimal dilutions for assays should be determined by the user.
Host Species Mouse
Immunogen Species Mouse
Immunogen Recombinant fragment corresponding to amino acids 329-530
Concentration 1 mg/ml
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH7.4, 50% glycerol, 0.09% sodium azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Protein G Purified
Clonality Monoclonal
Clone Number ESEE122
Isotype IgG1
Specificity Detects ~116kDa. Specific for HIF1Alpha.
Cite This Product Mouse Anti-Mouse HIF 1 alpha Monoclonal, Clone ESEE122 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-184)
Certificate of Analysis 1 µg/ml of SMC-184 was sufficient for detection of HIF1α in 20 µg of CoCl2-induced Hela cell lysate by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128376

Alternative Names ARNT interacting protein Antibody, HIF1A Antibody, Hypoxia inducible factor 1 alpha Antibody, MOP1 Antibody, PASD8 Antibody
Research Areas Cancer, Cell Signaling, Epigenetics, Oxidative Stress
Cellular Localization Cytoplasm, Nucleus
Accession Number NP_034561.2
Gene ID 15251
Swiss Prot Q61221
Scientific Background Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor that plays a critical role in the cellular response of hypoxia (1). The HIF1 complex consists of two subunits, HIF1-Alpha and HIF1-Beta, which are basic helix-loop-helix proteins of the PAS family (2). HIF1 regulates the transcription of a broad range of genes that facilitate responses to the hypoxic environment, including genes regulating angiogenesis, erythropoiesis, cell cycle, metabolism and apoptosis. The widely expressed HIF-1α is typically degraded rapidly in normoxic cells by the ubiquitin/proteasomal pathway. Under normoxic conditions, HIF-1α is proline hydroxylated leading to a conformational change that promotes binding to the von Hippel Lindau protein (VLH) E3 ligase complex; ubiquitination and proteasomal degradation follows (3, 4). Both hypoxic conditions and chemical hydroxylase inhibitors (such as desferrioxamine and cobalt) inhibit HIF-1α degradation and lead to its stabilization. In addition, HIF-1α can be induced in an oxygen-independent manner by various cytokines through the PI3K-AKT-mTOR pathway (5-7).
References 1. Sharp F.R. and Bernaudin M. (2004) Nat Rev Neurosci 5: 437-48.
2. Wang G.L., et al. (1995) Proc Natl Acad Sci U S A 92: 5510-4.
3. Jaakkola P., et al. (2001) Science 292: 468-72.
4. Maxwell P.H., et al. (1999) Nature 399: 271-5.
5. Fukuda R., et al. (2002) J Biol Chem 277: 38205-11.
6. Jiang B.H., et al. (2001) Cell Growth Differ 12: 363-9.
7. Laughner E., et al. (2001) Mol Cell Biol 21: 3995-4004.

Bovine Serum Albumin (BSA) modified with Hexanoyl-Lysine adduct (HEL)

Bovine Serum Albumin (BSA) modified with Hexanoyl-Lysine adduct (HEL)__Bovine Serum Albumin (BSA) modified with Hexanoyl-Lysine adduct (HEL) Evatanepag

Product Name Hexanoyl-Lysine adduct BSA Conjugate
Description

Bovine Serum Albumin (BSA) modified with Hexanoyl-Lysine adduct (HEL)

Applications ,
WB
,
ELISA
Concentration Lot/batch specific. See included datasheet.
Conjugates No tag

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Expression System Synthetic
Purity >98%
Storage Buffer PBS pH 7.4, 0.09% Sodium Azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Filter Sterilized (0.2 µm)
Cite This Product Synthetic Hexanoyl-Lysine adduct BSA Conjugate (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPR-205)
Certificate of Analysis Detectable in ELISA at ≥ 5 ng.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128367

Alternative Names Hexanoyl-Lysine adduct BSA Conjugate, Hexanoyl-Lysine adduct-BSA Conjugate, Hexanoyl-Lysine adduct (BSA) Conjugate, HEL (Hexanoyl-Lysine adduct) BSA Conjugate, HEL BSA Conjugate, Hexanoyl-Lys adduct BSA Conjugate, Hexanoyl-Lys BSA Conjugate, Hexanoyl-Lysine (HEL) adduct BSA Conjugate, Hexanoyl-Lys (HEL) BSA Conjugate, Hexanoyl-Lysine adduct Bovine Serum Albumin Conjugate, Hexanoyl-Lysine adduct-Bovine Serum Albumin Conjugate, Hexanoyl-Lysine adduct (Bovine Serum Albumin) Conjugate, HEL (Hexanoyl-Lysine adduct) Bovine Serum Albumin Conjugate, Hexanoyl-Lys adduct Bovine Serum Albumin Conjugate, Hexanoyl-Lys Bovine Serum Albumin Conjugate, Bovine Serum Albumin conjugated with Hexanoyl-Lysine adduct, Hexanoyl-Lysine adduct-modified BSA
Research Areas Cancer, Oxidative Stress

Mouse Anti-Hexanoyl-Lysine adduct (HEL) Monoclonal IgG1

Mouse Anti-Hexanoyl-Lysine adduct (HEL) Monoclonal IgG1__Mouse Anti-Hexanoyl-Lysine adduct (HEL) Monoclonal IgG1 MK-0773

Product Name Hexanoyl-Lysine adduct Antibody
Description

Mouse Anti-Hexanoyl-Lysine adduct (HEL) Monoclonal IgG1

Species Reactivity Species Independent
Applications ,
WB
,
ICC/IF
,
ELISA
Antibody Dilution WB (1:1000); ICC/IF (1:50); ELISA (1:1000); optimal dilutions for assays should be determined by the user.
Host Species Mouse
Immunogen Synthetic Hexanoyl modified Keyhole Limpet Kemocyanin (KLH).
Concentration 1 mg/ml
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH 7.4, 50% glycerol, 0.9% Sodium Azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Protein G Purified
Clonality Monoclonal
Clone Number 5E8
Isotype IgG1
Specificity Specific for Hexanoyl-Lysine adduct (HEL) modified peptides and proteins. Does not detect free Hexanoyl-Lysine. Does not cross-react with Acrolein, Crotonaldehyde, 4-Hydroxy-2-hexenal, 4-Hydroxy none
Cite This Product Mouse Anti-Hexanoyl-Lysine adduct Monoclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-509)
Certificate of Analysis A 1:1000 dilution of SMC-508 was sufficient for detection of Hexanoyl Lysine adduct in 0.5 µg of Hexanoyl Lysine conjugated to BSA by ECL immunoblot analysis using Goat Anti-Mouse IgG:HRP as the secondary Antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128366

Alternative Names Hexanoyl-Lysine adduct Antibody, HEL (Hexanoyl-Lysine adduct) Antibody, HEL Antibody, HEL Adduct Antibody, Hexanoyl-Lys adduct Antibody, Hexanoyl-Lys Antibody, Hexanoyl-Lysine (HEL) adduct Antibody, Hexanoyl-Lys (HEL) Antibody, Hexanoyl Lysine adduct Antibody, Hexanoyl-Lysine adduct-modified protein Antibody, Hexanoyl-Lysine Adduct (HEL) Antibody
Research Areas Cancer, Lipid peroxidation, Oxidative Stress

Mouse Anti-Hexanoyl-Lysine adduct (HEL) Monoclonal IgG1

Mouse Anti-Hexanoyl-Lysine adduct (HEL) Monoclonal IgG1__Mouse Anti-Hexanoyl-Lysine adduct (HEL) Monoclonal IgG1 Tirasemtiv

Product Name Hexanoyl-Lysine adduct Antibody
Description

Mouse Anti-Hexanoyl-Lysine adduct (HEL) Monoclonal IgG1

Species Reactivity Species Independent
Applications ,
WB
,
ICC/IF
,
ELISA
Antibody Dilution WB (1:1000); ICC/IF (1:50); ELISA (1:1000); optimal dilutions for assays should be determined by the user.
Host Species Mouse
Immunogen Synthetic Hexanoyl modified Keyhole Limpet Kemocyanin (KLH).
Concentration 1 mg/ml
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH 7.4, 50% glycerol, 0.9% Sodium Azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Protein G Purified
Clonality Monoclonal
Clone Number 5D9
Isotype IgG1
Specificity Specific for Hexanoyl-Lysine adduct (HEL) modified peptides and proteins. Does not detect free Hexanoyl-Lysine. Does not cross-react with Acrolein, Crotonaldehyde, 4-Hydroxy-2-hexenal, 4-Hydroxy none
Cite This Product Mouse Anti-Hexanoyl-Lysine adduct Monoclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-508)
Certificate of Analysis A 1:1000 dilution of SMC-508 was sufficient for detection of Hexanoyl Lysine adduct in 0.5 µg of Hexanoyl Lysine conjugated to BSA by ECL immunoblot analysis using Goat Anti-Mouse IgG:HRP as the secondary Antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128352

Alternative Names Hexanoyl-Lysine adduct Antibody, HEL (Hexanoyl-Lysine adduct) Antibody, HEL Antibody, HEL Adduct Antibody, Hexanoyl-Lys adduct Antibody, Hexanoyl-Lys Antibody, Hexanoyl-Lysine (HEL) adduct Antibody, Hexanoyl-Lys (HEL) Antibody, Hexanoyl Lysine adduct Antibody, Hexanoyl-Lysine adduct-modified protein Antibody, Hexanoyl-Lysine Adduct (HEL) Antibody
Research Areas Cancer, Lipid peroxidation, Oxidative Stress

Herbimycin A

Herbimycin A__Hsp90 inhibitor HBX 19818

Product Name Herbimycin A
Description

Hsp90 inhibitor

Purity >98%
CAS No. 70563-58-5
Molecular Formula C30H42N2O10, C30H42N2O9
Molecular Weight 574.3, 575.3
Storage Temperature -20ºC
Shipping Temperature Shipped Ambient
Product Type Inhibitor
Solubility Soluble in DMSO (>25 mg/ml) and ethanol (10 mg/ml)
Source Synthetic
Appearance Yellow Solid
SMILES Cemail protected1CC@@H(C@@H(email protected(/C=C(/C@@H(email protected(/C=CC=C(C(=O)NC2=CC(=O)C=C(C@@H1OC)C2=O)/C)OC)OC(=O)N)C)C)OC)OC
InChI InChI=1S/C30H42N2O9/c1-16-10-9-11-23(37-5)28(41-30(31)36)18(3)12-17(2)27(40-8)24(38-6)13-19(4)26(39-7)21-14-20(33)15-22(25(21)34)32-29(
InChIKey MCAHMSDENAOJFZ-BVXDHVRPSA-N
Safety Phrases Classification: Caution: Substance not yet fully tested.
Safety Phrases:
S22 – Do not breathe dust
S24/25 – Avoid contact with skin and eyes
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
Cite This Product Herbimycin A (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-116)

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/1912835

Alternative Names (2R,3S,5S,6R,7S,8E,10S,11S,12E,14E)-2,5,6,11-tetramethoxy-3,7,9,15-tetramethyl-16,20,22-trioxo-17-azabicyclo16.3.1docosa-1(21),8,12,14,18-pentaen-10-yl carbamate
Research Areas Cancer, Heat Shock
PubChem ID 6436247
Scientific Background Herbimycin A, a benzoquinoid ansamycin antibiotic, irreversibly and selectively inhibits tyrosine kinases by reacting with thiol groups (1,2). It is effective on Src, Yes, Fps, Ros, Abl and ErbB oncogene products (1-3) and inhibits thrombin-induced tyrosine phosphorylation of phospholipase C (4). Looking for more information on HSP90? Visit our new HSP90 Scientific Resource Guide at http://www.HSP90.ca.
References 1. Uehara Y., and Fukazawa H. (1991) Methods Enzymol. 201: 370.
2. Fukazawa H., et al. (1991) Biochem. Pharmacol. 42: 1661.
3. Satoh T., et al. (1992) J.Biol.Chem. 267: 2537.
4. Weiss R., and Nuccitelli R. (1992) J.Biol.Chem. 267:5608.

Anti-HDEL Antibody 2E7

Anti-HDEL Antibody
2E7__Mouse Anti-Yeast HDEL Monoclonal IgG2b GSK 2830371

Product Name HDEL Antibody
Description

Mouse Anti-Yeast HDEL Monoclonal IgG2b

Species Reactivity Barnyard Grass (Echinochloa), Beet (Beta vulgaris), Cotton (Gossypium), Fruit Fly (Drosophila melanogaster), Grass (Sorghum), Mung Bean (Vigna radiata), Plant, Wheat (Triticum spp.), Yeast, Yeast (Saccharomyces cerevisiae)
Applications ,
WB
,
ICC/IF
Antibody Dilution WB (1:1000), ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species Mouse
Immunogen Species Yeast
Immunogen Raised against a synthetic HDEL peptide corresponding to the C-terminus of yeast Bip
Concentration 1 mg/ml
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH7.4, 50% glycerol, 0.09% sodium azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Protein G Purified
Clonality Monoclonal
Clone Number 2E7
Isotype IgG2b
Specificity Detects ~78kDa.
Cite This Product Mouse Anti-Yeast HDEL Monoclonal, Clone 2E7 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SMC-175)
Certificate of Analysis 1 µg/ml of SMC-175 was sufficient for detection of HDEL-containing proteins in 10 µg of S. cerevisiae lysate by colorimetric immunoblot analysis using Goat anti-mouse IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19128041

Alternative Names H-D-E-L (his-asp-glu-leu) Antibody, endoplasmic reticulum Antibody, luminal ER protein retention Antibody, KDELR1 Antibody, Endoplasmic reticulum retention signal Antibody
Research Areas Cancer, Heat Shock, Cell Signaling, Trafficking
Cellular Localization Endoplasmic Reticulum
Scientific Background HSP 70 family comprises four highly conserved proteins, HSP 70, HSC 70, GRP 75 and GRP 78, which serve a variety of roles. They act as molecular chaperones, facilitating the assembly of multi-protein complexes; participate in the translocation of polypeptides across cell membranes and to the nucleus; and aid in the proper folding of nascent polypeptide chains (1, 2). GRP 78 is localized in the endoplasmic reticulum (ER), where it receives imported secretory proteins and is involved in the folding and translocation of nascent peptide chains (2). Sorting of these proteins is dependent on a C-terminal tetrapeptide signal, usually KDEL in animal cells, and HDEL in S.cerevisiae (3). The 2E7 clone recognizes the C-terminal peptide HDEL, a common version of the endoplasmic reticulum retention signal found in yeast, plant, nematode and other ER proteins. 2E7 specifically stains HDEL proteins in barnyard grass, beet, cotton, mung bean, sorghum and wheat (4).
References 1. Mayer M.P., and Bukau B. (2005) Cell Mol Life Sci. 62(6): 670-684.
2. Luo S., Mao C., Lee B., and Lee A.S. (2006) Mol Cell Biol. 26(15): 5688-5697.
3. Entrez Gene: HDEL, Gene ID: 10945
4. Napier R.M., et al. (1992) J Cell Sci. 102: 261-271.