EX-527

EX-527__SIRT1 inhibitor AZD-8055

Product Name EX-527
Description

SIRT1 inhibitor

Purity >98% (TLC); NMR (Conforms)
CAS No. 49843-98-3
Molecular Formula C13H13ClN2O
Molecular Weight 248.7
Storage Temperature -20ºC
Shipping Temperature Shipped Ambient
Product Type Inhibitor
Solubility Soluble in 18 mg/ml DMSO or 10 mg/ml Ethanol
Source Synthetic
Appearance Light Yellow Solid
SMILES C1CC(C2=C(C1)C3=C(N2)C=CC(=C3)Cl)C(=O)N
InChI InChI=1S/C13H13ClN2O/c14-7-4-5-11-10(6-7)8-2-1-3-9(13(15)17)12(8)16-11/h4-6,9,16H,1-3H2,(H2,15,17)
InChIKey FUZYTVDVLBBXDL-UHFFFAOYSA-N
Safety Phrases Classification: Harmful- May be harmful if inhaled, swallowed, or absorbed through skin.
Safety Phrases:
S22 – Do not breathe dust
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
S24/25- Avoid contact with skin and eyes
Hazard Statements:
H301 – Toxic if swallowed
H319 – Causes serious eye irritation
Precautionary Statements:
P301 + P310 – If swallowed: Immediately call a POSION Center
P305 + P351 + P338: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
Cite This Product EX-527 (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-353)

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123978

Alternative Names 6-Chloro-2,3,4,9-tetrahydro-1Hcarbazole-1-carboxamide (racemic)
Research Areas Cell Signaling, Epigenetics
PubChem ID 5113032
Scientific Background Selective SIRT1 inhibitor (IC50=98 nM). Does not inhibit other HDACs or SIRT family members. Increases p53 acetylation following DNA damage. Cell permeable.
References 1. Solomon J.M., et al., (2006) Mol. Cell. Biol. 26: 28.
2. Anderson J.L., et al., (2011) Mol.Cell 43: 834.

Etoposide

Etoposide__Topoisomerase II inhibitor Regorafenib

Product Name Etoposide
Description

Topoisomerase II inhibitor

Purity >98%
CAS No. 33419-42-0
Molecular Formula C29H32O13
Molecular Weight 588.56
Storage Temperature -20ºC
Shipping Temperature Shipped Ambient
Product Type Inducer
Solubility Soluble to 100 mM in DMSO
Source Synthetic
Appearance White solid
SMILES CC@@H1OCC@@H2C@@H(O1)C@@H(email protected(C@@H(O2)Oemail protected3email protected4COC(=O)C@@H4C@@H(C5=CC6=C(C=C35)OCO6)C7=CC(=C(C(=C7)OC)O)OC)O)O
InChI InChI=1S/C29H32O13/c1-11-36-9-20-27(40-11)24(31)25(32)29(41-20)42-26-14-7-17-16(38-10-39-17)6-13(14)21(22-15(26)8-37-28(22)33)12-4-18(34-2)23(30)1
InChIKey VJJPUSNTGOMMGY-MRAJQDPKSA-N
Safety Phrases Classification: Toxic. May be harmful or fatal if inhaled, swallowed or absorbed through skin.
Safety Phrases:
S22 – Do not breathe dust
S24/25 – Avoid contact with skin and eyes
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection
S53 – Avoid exposure – obtain special instruction before use
Risk Phrases:
R20/21/22 – Harmful by inhilation, in contact with skin and if swallowed
R45 – May cause cancer
R62 – Possible risk of impaired fertility
R68 – Possible risk of irreversible effects
Hazard Phrases:
H302-H350
Precautionary Phrases:
P201-P308 + P313
Cite This Product Etoposide (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-244)

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123941

Alternative Names (5S,5aR,8aR,9R)-9-(4-Hydroxy-3,5-dimethoxyphenyl)-8-oxo-5,5a,6,8,8a,9-hexahydrofuro3',4':6,7naphtho2,3-d1,3dioxol-5-yl 4,6-O-(1R)-ethylidene-β-D-glucopyranoside
Research Areas Cancer, Apoptosis
PubChem ID 36462
Scientific Background Etoposide inhibits the enzyme topoisomerase II, which unwinds DNA, and be doing so causes the DNA strand to break. Cancer cells are then less likely to be able to repair this damage (1).
References 1. Gordaliza M., et al. (2004) Toxicon. 44(4): 441-459.

Anti-ESR1 Antibody

Anti-ESR1 Antibody__Rabbit Anti-Human ESR1 Polyclonal LXR-623

Product Name ESR1 Antibody
Description

Rabbit Anti-Human ESR1 Polyclonal

Species Reactivity Human
Applications ,
WB
,
ICC/IF
Antibody Dilution WB (1:1000); ICC/IF (1:100); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Human
Immunogen Synthetic peptide from the mid-protein of Human ESR1
Concentration 1 mg/ml
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS, 50% glycerol, 0.09% sodium azide
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Peptide Affinity Purified
Clonality Polyclonal
Specificity Detects ~66 kDa.
Cite This Product Rabbit Anti-Human ESR1 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-708)
Certificate of Analysis A 1:1000 dilution of SPC-708 was sufficient for detection of ESR1 in 15 µg of human HeLa cell lysates by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123923

Alternative Names Estrogen receptor alpha Antibody, ER alpha Antibody, ER-alpha Antibody, Estrogen receptor alpha delta 3*,4,5,6,7*/819 2 isoform Antibody, NR3A1 Antibody, Nuclear receptor subfamily 3 group A member 1 Antibody, Estrogen receptor alpha delta 4*,5,6,7*/654 isoform Antibody, ESR1_HUMAN Antibody, ESTRR Antibody, Era Antibody, Estrogen receptor alpha delta 3*,4,5,6,7*,8*/941 isoform Antibody, Estrogen receptor 1 Antibody, Estrogen receptor alpha 3*,4,5,6,7*/822 isoform Antibody, DKFZp686N23123 Antibody, Estrogen receptor alpha delta 4*,5,6,7,8*/901 isoform Antibody, Estrogen receptor Antibody, Estrogen receptor alpha E1 E2 1 2 Antibody, ESR1 Antibody, Estrogen receptor alpha E1 N2 E2 1 2 Antibody, Estrogen nuclear receptor alpha Antibody, ESR Antibody, ER Antibody, ESRA Antibody, Estrogen receptor alpha delta 4 +49 isoform Antibody, Estradiol receptor Antibody
Research Areas Cancer, Cell Signaling, Domain Families, Epigenetics and Nuclear Signalling, Nuclear Signaling Pathways, Receptors, Transcription, Tumor Biomarkers, Zinc finger
Cellular Localization Cytoplasm, Cell membrane, Cytoplasmic Side, Nucleus, Peripheral membrane protein
Accession Number NP_000116.2
Gene ID 2099
Swiss Prot P03372

Erlotinib Hydrochloride

Erlotinib Hydrochloride__EGFR Kinase inhibitor Tadalafil

Product Name Erlotinib Hydrochloride
Description

EGFR Kinase inhibitor

Purity >99%
CAS No. 183319-69-9
Molecular Formula C22H24ClN3O4
Molecular Weight 429.9
Storage Temperature -20ºC
Shipping Temperature Shipped Ambient
Product Type Inhibitor
Solubility Soluble in DMSO at 18 mg/ml with warming; very poorly soluble in ethanol; very poorly soluble in water; maximum solubility in plain water is estimated to be about 5-20 µM; buffers, serum, or other additives may increase or decrease the aqueous solubility
Source Synthetic
Appearance Solid powder
SMILES H+.C1=C(OCCOC)C(=CC2=NC=NC(=C12)NC3=CC(=CC=C3)C#C)OCCOC.Cl-
InChI InChI=1S/C22H23N3O4.ClH/c1-4-16-6-5-7-17(12-16)25-22-18-13-20(28-10-8-26-2)21(29-11-9-27-3)14-19(18)23-15-24-22;/h1,5-7,12-15H,8-11H2,2-3H3,(H,23,24,25);1H
InChIKey GTTBEUCJPZQMDZ-UHFFFAOYSA-N
Safety Phrases Classification:
Not a hazardous substance or mixture.

Safety Phrases:
S22 – Do not breathe dust.
S24/25 – Avoid contact with skin and eyes.
S36/37/39 – Wear suitable protective clothing, gloves and eye/face protection.

Cite This Product Erlotinib Hydrochloride (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SIH-444)

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123864

Alternative Names N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine hydrochloride
Research Areas Cancer, Apoptosis, Cancer Growth Inhibitors, Cell Signaling, Tyrosine Kinase Inhibitors
PubChem ID 176871
Scientific Background Erlotinib Hydrochloride inhibits the human epidermal growth factor receptor (HER-1/EGFR) tyrosine kinase.
References 1. Ali S., et al. (2008) Mol. Cancer Ther. 7(6): 1708–1719.

Anti-ERK5 Antibody (pThr219 + pTyr221)

Anti-ERK5 Antibody (pThr219 + pTyr221)__Rabbit Anti-Human ERK5 (pThr219 + pTyr221) Polyclonal EGF816

Product Name ERK5 Antibody (pThr219 + pTyr221)
Description

Rabbit Anti-Human ERK5 (pThr219 + pTyr221) Polyclonal

Species Reactivity Human
Applications ,
WB
,
AM
Antibody Dilution WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Human
Immunogen A phospho-specific peptide corresponding to residues surrounding Thr219 and Tyr221 of human ERK2 (AA 216-222)
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Peptide Affinity Purified
Clonality Polyclonal
Specificity Detects 88.637 kDa.
Cite This Product Rabbit Anti-Human ERK5 (pThr219 + pTyr221) Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-977)
Certificate of Analysis A 1:250 dilution of SPC-977 was sufficient for detection of ERK5 (pThr219 + pTyr221) in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123821

Alternative Names Big MAP kinase 1 Antibody, BMK 1 kinase Antibody, ERK5 Antibody, BMK1 Antibody, EC 2.7.11.24 Antibody, ERK4 Antibody, ERK5 Antibody, Extracellular signal regulated kinase 5 Antibody, MAP kinase 7 Antibody, MAPK7 Antibody , Mitogen activated protein kinase 7 Antibody, MK07_HUMAN Antibody, OTTHUMP00000065906 Antibody, OTTHUMP00000065907 Antibody, PRKM7 Antibody
Cellular Localization Cytoplasm, Nucleus
Accession Number NP_002740.2
Gene ID 5598
Swiss Prot Q13164
Scientific Background ERK5 or MAPK7 is a protein-serine/threonine kinase. ERK5 is specifically activated by mitogen-activated protein kinase kinase 5 (MAP2K5/MEK5). Upregulation of this gene has been found in breast, prostate, and liver cancer.

Anti-ERK5 Antibody

Anti-ERK5 Antibody__Rabbit Anti-Human ERK5 Polyclonal XCT790

Product Name ERK5 Antibody
Description

Rabbit Anti-Human ERK5 Polyclonal

Species Reactivity Human, Mouse
Applications ,
WB
,
AM
Antibody Dilution WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Human
Immunogen Synthetic peptide of human ERK5 (AA373-387)
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Peptide Affinity Purified
Clonality Polyclonal
Specificity Detects 88.637 kDa.
Cite This Product Rabbit Anti-Human ERK5 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-1145)
Certificate of Analysis A 1:250 dilution of SPC-1145 was sufficient for detection of ERK5 in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123810

Alternative Names Big MAP kinase 1 Antibody, BMK 1 kinase Antibody, ERK5 Antibody, BMK1 Antibody, EC 2.7.11.24 Antibody, ERK4 Antibody, ERK5 Antibody, Extracellular signal regulated kinase 5 Antibody, MAP kinase 7 Antibody, MAPK7 Antibody , Mitogen activated protein kinase 7 Antibody, MK07_HUMAN Antibody, OTTHUMP00000065906 Antibody, OTTHUMP00000065907 Antibody, PRKM7 Antibody
Cellular Localization Cytoplasm, Nucleus
Accession Number NP_002740
Gene ID 5598
Swiss Prot Q13164
Scientific Background ERK5 or MAPK7 is a protein-serine/threonine kinase. ERK5 is specifically activated by mitogen-activated protein kinase kinase 5 (MAP2K5/MEK5). Upregulation of this gene has been found in breast, prostate, and liver cancer.

Anti-ERK2 Antibody (pThr185 + pTyr187)

Anti-ERK2 Antibody (pThr185 + pTyr187)__Rabbit Anti-Human ERK2 (pThr185 + pTyr187) Polyclonal Gilteritinib

Product Name ERK2 Antibody (pThr185 + pTyr187)
Description

Rabbit Anti-Human ERK2 (pThr185 + pTyr187) Polyclonal

Species Reactivity Human
Applications ,
WB
,
AM
Antibody Dilution WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Human
Immunogen A phospho-specific peptide corresponding to residues surrounding Thr185 and Tyr187 of human ERK2 (AA 182-188)
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Peptide Affinity Purified
Clonality Polyclonal
Specificity Detects 41.39 kDa.
Cite This Product Rabbit Anti-Human ERK2 (pThr185 + pTyr187) Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-975)
Certificate of Analysis A 1:250 dilution of SPC-975 was sufficient for detection of ERK2 (pThr185 + pTyr187) in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123733

Alternative Names ERK Antibody, ERT1 Antibody, ERK2 Antibody, Extracellular Signal Regulated Kinase 2 Antibody, MAP kinase 1 Antibody, MAP kinase 2 Antibody, MAP kinase isoform p42 Antibody, MAPK1 Antibody, MAPK2 Antibody, Mitogen-activated protein kinase 1 Antibody, Mitogen-activated protein kinase 2 Antibody, MK01_HUMAN Antibody, P38 Antibody, P40 Antibody, P41 Antibody, P42MAPK Antibody, PRKM1 Antibody, PRKM2 Antibody protein kinase, protein tyrosine kinase ERK2 Antibody
Cellular Localization Cytoplasm, Cytoskeleton, Nucleus, Spindle
Accession Number NP_002736.3
Gene ID 5594
Swiss Prot P28482
Scientific Background ERK2 or MAPK1 is a protein-serine/threonine kinase. Phosphorylates many diffrent transcription factors, such as ELK1. Acts as transcriptional repressor by binding directly to DNA. Essential for cyclin D1 induction. MAPK1 phosphoryltaes BCL2, which contributes to cell survival, the suppression of the apoptotic effect of BAD and up-regulation of the antiapoptotic protein MCL-1. Regulates accumulation of p53 during DNA damage response. Constitutively active in many human tumours, supposedly due to altered RAS, RAF, EGFR or other upstream elements. ERK/MAPK pathway was shown to promote cell motilty and tumour cell migration.

Anti-ERK2 Antibody

Anti-ERK2 Antibody__Rabbit Anti-Human ERK2 Polyclonal Isavuconazole

Product Name ERK2 Antibody
Description

Rabbit Anti-Human ERK2 Polyclonal

Species Reactivity Human, Mouse
Applications ,
WB
,
AM
Antibody Dilution WB (1:250); optimal dilutions for assays should be determined by the user.
Host Species Rabbit
Immunogen Species Human
Immunogen Synthetic peptide of human ERK2 (AA320-334)
Conjugates Alkaline Phosphatase, APC, ATTO 390, ATTO 488, ATTO 565, ATTO 594, ATTO 633, ATTO 655, ATTO 680, ATTO 700, Biotin, FITC, HRP, PE/ATTO 594, PerCP, RPE, Streptavidin, Unconjugated

APC (Allophycocyanin)
Overview:

  • High quantum yield
  • Large phycobiliprotein
  • 6 chromophores per molecule
  • Isolated from red algae
  • Molecular Weight: 105 kDa

APC Datasheet

 APC Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 650 nm

λem = 660 nm

εmax = 7.0×105

Φf = 0.68

Brightness = 476

Laser = 594 or 633 nm

Filter set = Cy®5

 

  ATTO 390
Overview:

  • High fluorescence yield
  • Large Stokes-shift (89 nm)
  • Good photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Coumarin derivate, uncharged
  • Low molar mass: 343.42 g/mol 

ATTO 390 Datasheet

ATTO 390 Fluorescent Dye Excitation and Emission Spectra Optical Properties:

λex = 390 nm

λem = 479 nm

εmax = 2.4×104

Φf = 0.90

τfl = 5.0 ns

Brightness = 21.6

Laser = 365 or 405 nm

 

  ATTO 488
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 804 g/mol 

ATTO 488 Datasheet

  ATTO 488 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 501 nm

λem = 523 nm

εmax = 9.0×104

Φf = 0.80

τfl = 4.1 ns

Brightness = 72

Laser = 488 nm

Filter set = FITC

 

 ATTO 565
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Good solubility in polar solvents
  • Excellent solubility in water
  • Very little aggregation
  • Rhodamine dye derivative
  • Molar Mass: 611 g/mol

ATTO 565 Datasheet

 ATTO 565 Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 563 nm

λem = 592 nm

εmax = 1.2×105

Φf = 0.9

τfl = 3.4 n

Brightness = 10

Laser = 532 nm

Filter set = TRITC

 

 ATTO 594
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation
  • New dye with net charge of -1
  • Molar Mass: 1137 g/mol

ATTO 594 Datasheet

 ATTO 594 Fluorophore Excitation and Emission Spectrum Optical Properties:

λex = 601 nm

λem = 627 nm

εmax = 1.2×105

Φf = 0.85

τfl = 3.5 ns

Brightness = 102

Laser = 594 nm

Filter set = Texas Red®

 

 ATTO 633
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Moderately hydrophilic
  • Good solubility in polar solvents
  • Stable at pH 4 – 11
  • Cationic dye, perchlorate salt
  • Molar Mass: 652.2 g/mol

ATTO 633 Datasheet

ATTO 633 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 629 nm

λem = 657 nm

εmax = 1.3×105

Φf = 0.64

τfl = 3.2 ns

Brightness = 83.2

Laser = 633 nm

Filter set = Cy®5

 

 ATTO 655
Overview:

  • High fluorescence yield
  • High thermal and photostability
  • Excellent ozone resistance
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 634 g/mol

ATTO 655 Datasheet

ATTO 655 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 663 nm

λem = 684 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.8 ns

Brightness = 37.5

Laser = 633 – 647 nm

Filter set = Cy®5

 

 ATTO 680
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 631 g/mol

ATTO 680 Datasheet

 ATTO 680 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 680 nm

λem = 700 nm

εmax = 1.25×105

Φf = 0.30

τfl = 1.7 ns

Brightness = 37.5

Laser = 633 – 676 nm

Filter set = Cy®5.5

 

 ATTO 700
Overview:

  • High fluorescence yield
  • Excellent thermal and photostability
  • Quenched by electron donors
  • Very hydrophilic
  • Good solubility in polar solvents
  • Zwitterionic dye
  • Molar Mass: 575 g/mol

ATTO 700 Datasheet

 ATTO 700 Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 700 nm

λem = 719 nm

εmax = 1.25×105

Φf = 0.25

τfl = 1.6 ns

Brightness = 31.3

Laser = 676 nm

Filter set = Cy®5.5

 

  FITC (Fluorescein)
Overview:

  • Excellent fluorescence quantum yield
  • High rate of photobleaching
  • Good solubility in water
  • Broad emission spectrum
  • pH dependent spectra
  • Molecular formula: C20H12O5
  • Molar mass: 332.3 g/mol

FITC-Fluorescent-conjugate

FITC Fluorescein Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 494 nm

λem = 520 nm

εmax = 7.3×104

Φf = 0.92

τfl = 5.0 ns

Brightness = 67.2

Laser = 488 nm

Filter set = FITC

 

 PE/ATTO 594
PE/ATTO 594 is a tandem conjugate, where PE is excited at 535 nm and transfers energy to ATTO 594 via FRET (fluorescence resonance energy transfer), which emits at 627 nm.
Overview:

  • High fluorescence yield
  • High photostability
  • Very hydrophilic
  • Excellent solubility in water
  • Very little aggregation

PE/ATTO 594 Datasheet

PE-ATTO 594 Fluorophore Conjugate Excitation and Emission Spectra Optical Properties:

λex = 535 nm

λem = 627 nm

Laser = 488 to 561 nm

 

 PerCP 
Overview:

  • Peridinin-Chlorophyll-Protein Complex
  • Small phycobiliprotein
  • Isolated from red algae
  • Large stokes shift (195 nm)
  • Molecular Weight: 35 kDa

PerCP Datasheet

 PerCP Fluorophore Absorption and Emission Spectrum Optical Properties:

λex = 482 nm

λem = 677 nm

εmax = 1.96 x 106

Laser = 488 nm

 

  R-PE (R-Phycoerythrin)
Overview:

  • Broad excitation spectrum
  • High quantum yield
  • Photostable
  • Member of the phycobiliprotein family
  • Isolated from red algae
  • Excellent solubility in water
  • Molecular Weight: 250 kDa

R-PE Datasheet

 R-PE Fluorophore Excitation and Emission Spectra Optical Properties:

λex = 565 nm

λem = 575 nm

εmax = 2.0×106

Φf = 0.84

Brightness = 1.68 x 103

Laser = 488 to 561 nm

Filter set = TRITC

 

AP (Alkaline Phosphatase)

Properties:

  • Broad enzymatic activity for phosphate esters of alcohols, amines, pyrophosphate, and phenols
  • Commonly used to dephosphorylate the 5’-termini of DNA and RNA to prevent self-ligation
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. pNPP, naphthol AS-TR phosphate, BCIP) into coloured products
    • Fluorogenic substrates (e.g. 4-methylumbelliferyl phosphate) into fluorescent products
  • Molecular weight: 140 kDa
  • Applications: Western blot, immunohistochemistry, and ELISA

AP Datasheet

HRP (Horseradish peroxidase)

Properties:

  • Enzymatic activity is used to amplify weak signals and increase visibility of a target
  • Readily combines with hydrogen peroxide (H2O2) to form HRP-H2O2 complex which can oxidize various hydrogen donors
  • Catalyzes the conversion of:
    • Chromogenic substrates (e.g. TMB, DAB, ABTS) into coloured products
    • Chemiluminescent substrates (e.g. luminol and isoluminol) into light emitting products via enhanced chemiluminescence (ECL)
    • Fluorogenic substrates (e.g. tyramine, homovanillic acid, and 4-hydroxyphenyl acetic acid) into fluorescent products
  • High turnover rate enables rapid generation of a strong signal
  • 44 kDa glycoprotein
  • Extinction coefficient: 100 (403 nm)
  • Applications: Western blot, immunohistochemistry, and ELISA

HRP Datasheet

BiotinBiotin Conjugate Structure

Properties:

  • Binds tetrameric avidin proteins including Streptavidin and neuravidin with very high affinity
  • Molar mass: 244.31 g/mol
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Biotin Datasheet

Streptavidin

Properties:

  • Homo-tetrameric protein purified from Streptomyces avidinii which binds four biotin molecules with extremely high affinity
  • Molecular weight: 53 kDa
  • Formula: C10H16N2O3S
  • Applications: Western blot, immunohistochemistry, and ELISA

Streptavidin Datasheet

Storage Buffer PBS pH7.4, 50% glycerol, 0.025% Thimerosal
Storage Temperature -20ºC
Shipping Temperature Blue Ice or 4ºC
Purification Peptide Affinity Purified
Clonality Polyclonal
Specificity Detects 42 kDa.
Cite This Product Rabbit Anti-Human ERK2 Polyclonal (StressMarq Biosciences Inc., Victoria BC CANADA, Catalog # SPC-1144)
Certificate of Analysis A 1:250 dilution of SPC-1144 was sufficient for detection of ERK2 in 10 µg of HeLa cell lysate by ECL immunoblot analysis using goat anti-rabbit IgG:HRP as the secondary antibody.

References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/19123732

Alternative Names ERK Antibody, ERT1 Antibody, ERK2 Antibody, Extracellular Signal Regulated Kinase 2 Antibody, MAP kinase 1 Antibody, MAP kinase 2 Antibody, MAP kinase isoform p42 Antibody, MAPK1 Antibody, MAPK2 Antibody, Mitogen-activated protein kinase 1 Antibody, Mitogen-activated protein kinase 2 Antibody, MK01_HUMAN Antibody, P38 Antibody, P40 Antibody, P41 Antibody, P42MAPK Antibody, PRKM1 Antibody, PRKM2 Antibody protein kinase, protein tyrosine kinase ERK2 Antibody
Cellular Localization Cytoplasm, Cytoskeleton, Nucleus, Spindle
Accession Number NP_620407
Gene ID 5594
Swiss Prot P28482
Scientific Background ERK2 or MAPK1 is a protein-serine/threonine kinase. Phosphorylates many diffrent transcription factors, such as ELK1. Acts as transcriptional repressor by binding directly to DNA. Essential for cyclin D1 induction. MAPK1 phosphoryltaes BCL2, which contributes to cell survival, the suppression of the apoptotic effect of BAD and up-regulation of the antiapoptotic protein MCL-1. Regulates accumulation of p53 during DNA damage response. Constitutively active in many human tumours, supposedly due to altered RAS, RAF, EGFR or other upstream elements. ERK/MAPK pathway was shown to promote cell motilty and tumour cell migration.

The most significant quorum-regulated virulence factors of P. aeruginosa. It has

The most significant quorum-regulated virulence factors of P. aeruginosa. It has various toxic effects on host tissues at such infection websites as the respiratory epithelium, where its toxicity is thought to become related for the generation of reactive oxygen species when pyocyanin is oxidized. Pyocyanin is below the control from the Rhl and PQS systems and may accordingly be produced even in the absence of LasR soon after a delay. As with all the presence of lasR mutants, high levels of sputum pyocyanin happen to be linked with sophisticated infection in cystic fibrosis individuals. Pyocyanin also serves as an antibiotic due to its redox activity, can act as a terminal electron lasR Cells Overproduce Pyocyanin clinical sputum samples and in constantly fed biofilms in vitro. Indeed, one particular purpose for the remedy resistance of cells growing in biofilms is their reasonably slow growth. As a result, I reasoned that slow-growing or stationary-phase cells maintained in longer-term culture may manifest phenotypes that reflect their behavior inside a a lot more physiologically relevant state. Right here, I report that wild-type and lasR cells exhibit clearly distinct however complementary stationary-phase phenotypes. In addition, wild-type/lasR mixtures can collaborate to enact behaviors inaccessible for the person strains. Components and Techniques Routine bacterial culture Pseudomonas aeruginosa and Escherichia coli strains had been routinely cultured on LB Lennox strong and liquid media at 37uC. Culture stocks have been stored in 25% glycerol at -80uC, and fresh plates have been grown for every experiment. The following antibiotics were applied for selection/maintenance for P. aeruginosa; the upkeep concentration was employed 1662274 for E. coli culture: gentamycin and tetracycline. Irgasan was utilised as an E. coli-specific selective agent. P. aeruginosa strains are listed in Specialized media M63 MedChemExpress SIS3 medium contained one hundred mM KH2PO4, 15.14 mM 2SO4, and 0.36 mM FeSO4H2O. A 5X salts stock was adjusted to pH 7.0 with KOH before autoclaving. To produce the final medium, the 5X stock was mixed with 0.2% casamino acids and 0.5% glycerol from 20% and 50% sterile stocks, respectively, and adjusted to 1X with sterile H2O. M9 medium was primarily based on a salt remedy of 12.8 g/L NaHPO47H2O, 3 g/L KH2PO4, 0.five g/L NaCl, 1 g/L NH4Cl. A 5X salts stock was prepared and autoclaved. To create the final medium, the 5X stock was mixed with 2 mM MgSO4 and 0.1 mM CaCl2 from sterile 1M stocks, the acceptable carbon sources, and was adjusted to 1X with sterile H2O. SCFM medium was made as described by Palmer et al. and was prepared and utilised freshly, because it displayed a brief shelf life. Specialized culture conditions Static cultures of P. aeruginosa have been grown in 4-ml 3PO cost volumes in 12well microtiter plates, in 2-ml volumes in 24-well plates, or in 200ml volumes in 96-well plates. A 1% volume of stationary-phase LB starter culture, adjusted to OD600 = 1.0, was employed for inoculation. Pure autoinducer molecules have been added from one hundred mM stocks in DMSO, and equivalent volumes of DMSO had been employed for controls. acceptor for P. aeruginosa, and is often a terminal signaling molecule within the quorum-sensing cascade. It really is for that reason valuable for monitoring quorum-sensing activity in P. aeruginosa, specifically offered its bright blue color when oxidized. Most preceding laboratory research of P. aeruginosa quorum sensing have observed bacteria exponentially growing in shaking culture. Beneath such conditions, wild-type quorum-sensing behaviors commence during late exponential phase and con.The most essential quorum-regulated virulence factors of P. aeruginosa. It has several toxic effects on host tissues at such infection sites because the respiratory epithelium, where its toxicity is thought to be associated to the generation of reactive oxygen species when pyocyanin is oxidized. Pyocyanin is under the manage on the Rhl and PQS systems and can accordingly be produced even inside the absence of LasR immediately after a delay. As with the presence of lasR mutants, higher levels of sputum pyocyanin have already been associated with sophisticated infection in cystic fibrosis patients. Pyocyanin also serves as an antibiotic because of its redox activity, can act as a terminal electron lasR Cells Overproduce Pyocyanin clinical sputum samples and in constantly fed biofilms in vitro. Indeed, one reason for the treatment resistance of cells expanding in biofilms is their fairly slow development. Consequently, I reasoned that slow-growing or stationary-phase cells maintained in longer-term culture could manifest phenotypes that reflect their behavior within a additional physiologically relevant state. Right here, I report that wild-type and lasR cells exhibit clearly distinct but complementary stationary-phase phenotypes. Furthermore, wild-type/lasR mixtures can collaborate to enact behaviors inaccessible for the person strains. Components and Methods Routine bacterial culture Pseudomonas aeruginosa and Escherichia coli strains have been routinely cultured on LB Lennox strong and liquid media at 37uC. Culture stocks have been stored in 25% glycerol at -80uC, and fresh plates were grown for each and every experiment. The following antibiotics have been made use of for selection/maintenance for P. aeruginosa; the upkeep concentration was utilized 1662274 for E. coli culture: gentamycin and tetracycline. Irgasan was employed as an E. coli-specific selective agent. P. aeruginosa strains are listed in Specialized media M63 medium contained 100 mM KH2PO4, 15.14 mM 2SO4, and 0.36 mM FeSO4H2O. A 5X salts stock was adjusted to pH 7.0 with KOH prior to autoclaving. To create the final medium, the 5X stock was mixed with 0.2% casamino acids and 0.5% glycerol from 20% and 50% sterile stocks, respectively, and adjusted to 1X with sterile H2O. M9 medium was based on a salt solution of 12.8 g/L NaHPO47H2O, three g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl. A 5X salts stock was prepared and autoclaved. To create the final medium, the 5X stock was mixed with 2 mM MgSO4 and 0.1 mM CaCl2 from sterile 1M stocks, the suitable carbon sources, and was adjusted to 1X with sterile H2O. SCFM medium was made as described by Palmer et al. and was ready and used freshly, since it displayed a brief shelf life. Specialized culture conditions Static cultures of P. aeruginosa had been grown in 4-ml volumes in 12well microtiter plates, in 2-ml volumes in 24-well plates, or in 200ml volumes in 96-well plates. A 1% volume of stationary-phase LB starter culture, adjusted to OD600 = 1.0, was applied for inoculation. Pure autoinducer molecules were added from 100 mM stocks in DMSO, and equivalent volumes of DMSO had been made use of for controls. acceptor for P. aeruginosa, and is really a terminal signaling molecule within the quorum-sensing cascade. It’s therefore beneficial for monitoring quorum-sensing activity in P. aeruginosa, in particular provided its bright blue color when oxidized. Most prior laboratory studies of P. aeruginosa quorum sensing have observed bacteria exponentially expanding in shaking culture. Beneath such conditions, wild-type quorum-sensing behaviors start throughout late exponential phase and con.

. Taken together, we explored the metabolome of PAH and characterized metabolomic

. Taken together, we explored the metabolome of PAH and characterized metabolomic signatures, which within the context of other molecular alterations could lead to a complete understanding of illness progression. Pentagastrin web Specifically, we identified that disrupted glycolysis in conjunction with increased fatty acid metabolism and an altered -oxidation pathway directly regulates pathological vascular remodeling in the sophisticated stage of PH by suggests of transcriptional handle of its regulatory enzymes. Fatty acid oxidation is usually a extra efficient method in comparison with glycolysis for ATP production and would be the far more best metabolic pathway for supplying power for additional vascular remodeling just after plexiform lesions have created. Identifying altered metabolites of glucose and fatty acid metabolism is perfect, as these metabolites may possibly serve as possible biomarkers for diagnosing PAH, for making 11967625 additional precise prognoses from the illness, and for monitoring PAH progression. Our benefits hold clinical significance for developing a combination of therapeutic approaches. Using a far better understanding in the metabolomic alterations that occur throughout PAH, metabolic modulation therapy is usually further created to manage vascular remodeling and cell proliferation for the remedy of PAH in its advanced stage. By reconsidering remedy tactics for PAH, we recommend that PAH may be attenuated by purchase Triptorelin inhibiting glycolysis in the early stage from the illness and by inhibiting fatty acid oxidation towards the advanced stage from the disease. These metabolic interventions could open a brand new avenue of therapeutics that is less invasive for the treatment of PAH. Supporting Details Acknowledgments Authors thank Ryan Michalek for his fantastic operate on metabolites analysis from Metabolon and Hana, Zhing-Hong Yun for her outstanding strategy support. Author Contributions Conceived and developed the experiments: YZ MDP. Performed the experiments: YZ JP CL LW LC RZ TM. Analyzed the information: YZ JP CL LW LC RZ TM JG MDP. Contributed reagents/materials/analysis tools: YZ MH MM. Wrote the paper: YZ JP TW ML SK JG MDP. References 1. Hassoun PM, M Mea, Barnett CF, et al. 5th Globe Symposium of Pulmonary Hypertension, Nice. two. Rabinovitch M The committed vascular smooth muscle cell: a query of ��timing��or ��response to pressure��or each. Am J Respir Cell Mol Biol 16: 364 365. 3. Farber HW, Loscalzo J Pulmonary arterial hypertension. N Engl J Med 351: 16551665. four. Izikki M, Guignabert C, Fadel E, Humbert M, Tu L, et al. Endothelialderived FGF2 contributes for the progression of pulmonary hypertension in humans and rodents. J Clin Invest 119: 512523. 5. Sanchez O, Marie E, Lerolle U, Wermert D, Israel-Biet D, et al. Pulmonary arterial hypertension in ladies. Rev Mal Respir 27: e7987. six. Thenappan T, Shah SJ, Wealthy S, Gomberg-Maitland M A USA-based registry for pulmonary arterial hypertension: 1982-2006. Eur Respir J 30: 1103 1110. 7. Fessel JP, Hamid R, Wittmann BM, Robinson LJ, Blackwell T, et al. Metabolomic analysis of bone morphogenetic protein receptor form 2 mutations in human pulmonary endothelium reveals widespread metabolic reprogramming. Pulm Circ two: 201213. 8. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, et al. Inhibition of glycolysis in cancer cells: a novel tactic to overcome drug resistance related with mitochondrial respiratory defect and hypoxia. Cancer Res 65: 613621. 9. Chen Z, Lu W, Garcia-Prieto C, Huang P The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 39.. Taken collectively, we explored the metabolome of PAH and characterized metabolomic signatures, which within the context of other molecular alterations may well result in a total understanding of illness progression. Especially, we identified that disrupted glycolysis in conjunction with enhanced fatty acid metabolism and an altered -oxidation pathway directly regulates pathological vascular remodeling in the advanced stage of PH by indicates of transcriptional manage of its regulatory enzymes. Fatty acid oxidation is a extra efficient approach compared to glycolysis for ATP production and will be the much more perfect metabolic pathway for supplying energy for further vascular remodeling soon after plexiform lesions have developed. Identifying altered metabolites of glucose and fatty acid metabolism is excellent, as these metabolites could serve as possible biomarkers for diagnosing PAH, for making 11967625 far more correct prognoses from the disease, and for monitoring PAH progression. Our final results hold clinical significance for creating a combination of therapeutic techniques. Using a far better understanding with the metabolomic changes that occur through PAH, metabolic modulation therapy may be further developed to manage vascular remodeling and cell proliferation for the therapy of PAH in its advanced stage. By reconsidering treatment techniques for PAH, we suggest that PAH is usually attenuated by inhibiting glycolysis at the early stage with the illness and by inhibiting fatty acid oxidation towards the sophisticated stage of the disease. These metabolic interventions could open a brand new avenue of therapeutics that may be less invasive for the treatment of PAH. Supporting Information Acknowledgments Authors thank Ryan Michalek for his great work on metabolites analysis from Metabolon and Hana, Zhing-Hong Yun for her great technique support. Author Contributions Conceived and made the experiments: YZ MDP. Performed the experiments: YZ JP CL LW LC RZ TM. Analyzed the data: YZ JP CL LW LC RZ TM JG MDP. Contributed reagents/materials/analysis tools: YZ MH MM. Wrote the paper: YZ JP TW ML SK JG MDP. References 1. Hassoun PM, M Mea, Barnett CF, et al. 5th Globe Symposium of Pulmonary Hypertension, Good. two. Rabinovitch M The committed vascular smooth muscle cell: a query of ��timing��or ��response to pressure��or both. Am J Respir Cell Mol Biol 16: 364 365. 3. Farber HW, Loscalzo J Pulmonary arterial hypertension. N Engl J Med 351: 16551665. 4. Izikki M, Guignabert C, Fadel E, Humbert M, Tu L, et al. Endothelialderived FGF2 contributes for the progression of pulmonary hypertension in humans and rodents. J Clin Invest 119: 512523. 5. Sanchez O, Marie E, Lerolle U, Wermert D, Israel-Biet D, et al. Pulmonary arterial hypertension in women. Rev Mal Respir 27: e7987. six. Thenappan T, Shah SJ, Wealthy S, Gomberg-Maitland M A USA-based registry for pulmonary arterial hypertension: 1982-2006. Eur Respir J 30: 1103 1110. 7. Fessel JP, Hamid R, Wittmann BM, Robinson LJ, Blackwell T, et al. Metabolomic evaluation of bone morphogenetic protein receptor sort two mutations in human pulmonary endothelium reveals widespread metabolic reprogramming. Pulm Circ 2: 201213. 8. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, et al. Inhibition of glycolysis in cancer cells: a novel tactic to overcome drug resistance related with mitochondrial respiratory defect and hypoxia. Cancer Res 65: 613621. 9. Chen Z, Lu W, Garcia-Prieto C, Huang P The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 39.